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ABSTRACT

Predicting molecular interactions is a major goal in
rational drug design. Pharmacophore, which is the
spatial arrangement of features that is essential for
a molecule to interact with a specific target
receptor, is an important model for achieving this
goal. We present a freely available web server,
named PharmaGist, for pharmacophore detection.
The employed method is ligand based. Namely, it
does not require the structure of the target receptor.
Instead, the input is a set of structures of drug-like
molecules that are known to bind to the receptor.
The output consists of candidate pharmacophores
that are computed by multiple flexible alignment of
the input ligands. The method handles the flexibility
of the input ligands explicitly and in deterministic
manner within the alignment process. PharmaGist is
also highly efficient, where a typical run with up to
32 drug-like molecules takes seconds to a few
minutes on a stardard PC. Another important
characteristic is the capability of detecting pharma-
cophores shared by different subsets of input
molecules. This capability is a key advantage when
the ligands belong to different binding modes or
when the input contains outliers. The webserver has
a user-friendly interface available at http://bioin
fo3d.cs.tau.ac.il/PharmaGist.

INTRODUCTION

A pharmacophore is the spatial arrangement of features
that enables a molecule to interact with a target receptor

in a specific binding mode. Once identified, a pharmaco-
phore can serve as a powerful model in versatile
applications for rational drug design, such as virtual
screening, de novo design, lead optimization and ADME/
Tox studies (1). In addition, pharmacophore models can
be useful for Chemogenomics studies (2,3). This is a new
field for systematically studying the effect of a large
number of drug-like molecules on a biological network of
macromolecular targets. Pharmacophores of target
macromolecules in a network can be used to explain and
predict the biological effect of new drug-like ligands.
Indeed, a large-scale identification of pharmacophores for
many biological macromolecules is becoming more and
more feasible due to the expanding number of databases
of drug-like ligands with known interacting receptors.
Many computational methods for pharmacophore

identification have been introduced (1,4). Some methods,
which are called the direct methods, use both ligand and
receptor information. However, in most cases the structure
of the target receptor is unknown and the only available
information is a set of ligands that have been observed to
interact with the receptor. In such cases, only the second
type of methods, the indirect methods, are applicable, since
they are based on ligand information alone.
Given a set of drug-like molecules that are known to

interact with a specific target receptor, the aim of the
indirect methods is to find the largest (or highest scoring)
3D pattern of features responsible for binding that is
shared by all or most of the input ligands. The task is
challenging due to the hardness of the problem with
respect to both the number of input molecules and the
flexibility of drug-like molecules. Specifically, aligning
drug-like molecules is NP hard even in the case of three
rigid molecules (5,6) and in the case of a pair of molecules,
where one is rigid and the other one is flexible (7).
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Existing indirect methods for pharmacophore detection
mainly differ in their approach for addressing the flexibility
of a drug-like molecule. A drug-like molecule may possess
several rotatable bonds and as a result it may have many
potentially feasible conformations. The specific conforma-
tions that the input ligands adopt when interacting with the
receptor are unknown. Therefore, all their feasible con-
formations have to be considered. Most indirect methods
perform the conformational search as a separate initial
stage. Specifically, a discrete set of conformations is
generated for each input ligand with the aim of sampling
all its feasible conformations. Examples for such methods
include RAPID (8), MPHIL (9) and the commercial
programs DISCO (10), Phase (11) of Schrodinger and
HipHop and HypoGen, which are part of the Catalyst
software package of Accelrys (12–16). The main limitation
of this approach is that covering the whole conformational
space might require an extremely large number of
conformations, especially for molecules with many rotat-
able bonds. An alternative approach is to incorporate the
conformational search within the pattern identification
process. This way the search space is not restricted to a
precompiled discrete set of conformations. However, the
current methods that adopt this approach are based on
random search. Among them are SCAMPI (17), GAMMA
(18–20), GASP (21,22) and GALAHAD (23,24) of Tripos
and the MOGA-based method described in ref. (25).
Another approach for treating the flexibility of the

ligands within the pattern detection process is employed
by the MTree method of BioSolveIT, which aligns feature-
trees derived from the 2D structures of the ligands (26).
Herein, we present PharmaGist, the first webserver for

elucidating 3D pharmacophores from a set of drug-like
molecules that are known to bind to a target receptor. The
method efficiently searches for possible pharmacophores
and reports the highest-scoring ones (7). The candidate
pharmacophores are detected by multiple flexible align-
ment of the input ligands, where the flexibility of the ligands
is treated explicitly and in a deterministic manner in the
alignment process. Another key advantage of the method is
the ability to detect pharmacophores common to subsets of
input ligands, a characteristic that makes PharmaGist
tolerant to outliers and to several binding modes. The
performance of PharmaGist was successfully evaluated on
different test cases (7). The whole dataset consists of almost
80 crystal structures of receptor–ligand complexes taken
mainly from the FlexS benchmark dataset (27). The
complexes are classified into 12 different cases, where
each case includes complexes of the same receptor with
different ligands. For validation, we produced a reference
pharmacophore for each test case. The reference pharma-
cophore was extracted from a 3D alignment of the bounded
ligands. This alignment was derived from a superposition
of the receptor in the different complexes. In all cases, the
highest scoring pharmacophore candidate detected by
PharmaGist was similar to the reference pharmacophore.
The runtime ranges from seconds to a few minutes on a
typical set of ligands. Below, we briefly describe the method
followed by a comprehensive description of the webserver.
The interface of the server is user friendly with only two
mandatory input fields. The output provides a convenient

browsing over the suggested pharmacophores and an
interactive visualization using Jmol (28).

METHOD OVERVIEW

The input is set of drug-like ligands in a 3D representa-
tion. The output is a list of candidate pharmacophores.
These are 3D patterns of physico-chemical features that
are shared by all or some input ligands. In addition, the
output provides for each candidate pharmacophore a 3D
superposition of conformations of input ligands that share
it. Generally, the algorithm suggests solving the task by
multiple flexible alignment of drug-like molecules.
However, due to the hardness of the problem, a heuristic
solution is provided in practice. In addition, the algorithm
assumes that one of the input ligands is given in a
conformation that is not very different from the bound
state. This ligand serves as a pivot on which the other
target ligands are aligned. By default, the algorithm
iteratively selects each input ligand to serve as a pivot.
Alternatively, the pivot can be defined by the user as the
ligand with the highest affinity to the receptor or the one
with the lowest number of rotatable bonds. Also, in case
of a highly flexible pivot, it is possible to use a pre-
computed set of conformations.

The method consists of four major stages: (i) ligand
representation, (ii) pairwise alignment, (iii) multiple
alignment and (iv) solution clustering and output
(Figure 1). In the first stage, each input ligand is processed
separately. The method detects the rotatable bonds of the
ligand and divides it into rigid groups accordingly. In
addition, the ligand is assigned with a set of physico-
chemical features (hydrogen bond donor/acceptor, anion/
cation, aromatic ring, hydrophobic group or, optionally,
other features defined by the user). In the second stage,
given a pivot (treated as rigid) and one target ligand
(treated as flexible), pairwise alignments are computed as
follows. First, for each rigid group of the target ligand, the
method generates a set of transformations for super-
imposing the target rigid group onto the pivot. The result
for each target rigid group is a set of candidate new poses
on the pivot. Then, these poses are reassembled into new
conformations of the target ligand aligned on the pivot.
The score of a resulting pairwise alignment is a weighted
sum of the matched pivot features. Two features, one from
the pivot and one from a conformation of the target
ligand, can be matched if they are of the same type and the
distance between them is below a predefined threshold
(1 Å by default). The algorithm uses default weight values
for each feature type (0.3 for hydrophobicity and 1 for the
rest), unless other values are supplied by the user. The
output of the stage is a large number of high-scoring
pairwise alignments between the pivot and the target
ligand. The third stage also works with a selected pivot.
Pairwise alignments between the pivot and the target
ligands are combined into multiple alignments. The goal is
to find significant subsets of pivot features that are
matched by as many pairwise alignments for different
target ligands as possible. However, maximizing the
number of aligned ligands can be contradictory to
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maximizing the score of the matched features. Thus, the
method produces multiple alignments for each subset size
of input ligands. Due to efficiency considerations, this is
achieved by enumerating all the possible subsets of pivot
features and selecting the ones that can be aligned by as
many ligands as possible. Subsets of pivot features with
a significant score are candidate pharmacophores and
will be reported to the user. By default, a candidate
pharmacophore must consist of at least three spatially
distinct features, but this parameter is user-defined. In the
last fourth stage, candidate pharmacophores derived from
different pivot iterations are clustered and the highest
scoring non-redundant ones for each number of molecules
are reported.

WEBSERVER

The web interface is very simple. Its input form has only
two mandatory fields: a file with input ligands and an
email address. After submitting the form, the pharmaco-
phore detection algorithm starts running. When the run
completes, a link to a web page with candidate pharma-
cophores is sent to the user by an email.

Input

The basic input form is simple with two mandatory fields:
a file with drug-like molecules in Mol2 format and
an email address. Currently, the user may upload up to

32 molecules, either in a single Mol2 file or in one zip file
compressing multiple Mol2 files. The basic form has an
additional field for setting the number of candidate
pharmacophores to be reported for each subset size of
input molecules (10 by default). Other parameters can be
set in the ‘Advanced Options’ part of the form. By default,
these parameters are hidden and setting them is optional.
Users are encouraged to change these parameters if
additional data on the specific-binding site of the target
receptor are known. The advanced options include
selecting a key molecule to serve as a pivot and defining
the minimal number of spatially distinct features in a
pharmacophore. Additionally, users can set the scoring
weight assigned to each feature type. For example, if the
interaction with the target receptor is mostly hydrophobic,
the scoring weight assigned to hydrophobic features can
be increased. Finally, the server allows users to define their
own feature types with assigned scoring weights. This
option is useful when it is known that a specific group is
essential for an interaction with the receptor. An
additional explanation on each field is available in the
help page, which can be directly accessed by clicking on
the name of the field.

Output

A typical run of PharmaGist takes seconds to a few
minutes. Once the run completes, a link to a web page
with an access to the results is sent to the user via an email.
The results are stored on the server for at least a month, so
the user can view the results later again using the same
link.
The output of PharmaGist is demonstrated for an input

with seven elastase inhibitors. Figure 2 presents the main
output page. This page contains several tables. The upper
table lists the input molecules with their number of atoms
and assigned physico-chemical features. At the top of the
table, there is link to a web page that displays the
molecules with their features in a Jmol applet (28).
The next tables summarize the results. Each table presents
the highest scoring candidate pharmacophores shared by a
specific number of molecules. The tables are sorted in
descending order by the number of molecules. The
candidate pharmacophores in each table are displayed in
descending order by their scores. Note that at the top of
the result page there is a link to a page in which all the
candidate pharmacophores are sorted by their score,
regardless of the number of ligands that share them. At
the bottom of the result page, there is a link to a page that
displays the best flexible alignment for each pair of input
molecules. In the result tables, the following data are
presented for each candidate pharmacophore: (i) the
score, (ii) the names of the aligned molecules, (iii) the
number of common features and their type distribution
and (iv) a link to a page that displays the candidate
pharmacophore.
Figure 3 shows an example for a page that describes a

single candidate pharmacophore. Specifically, the page
describes the top scoring candidate pharmacophore
shared by all seven elastase inhibitors. The page supplies
a 3D visualization of the pharmacophore and the multiple

Figure 1. PharmaGist method flow.
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Figure 2. Main output page. The figure displays parts of the main output page obtained for an input with seven elastase inhibitors. Note that the link
to the page that displays the best flexible alignment for each pair of input molecules is not shown due to space limitation. This link appears at the
bottom of the main output page.

Figure 3. Pharmacophore output page. The displayed page describes the top scoring candidate pharmacophore shared by seven elastase inhibitors.
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flexible alignment that it is based on. The page consists of
three main parts: (i) a summary of the attributes of the
pharmacophore at the top, (ii) a Jmol display on the right
and (iii) a display control panel on the left. The summary
part contains the score of the candidate pharmacophore,
its number of features and their physico-chemical types.
By default, the Jmol display shows the pharmacophore
(spacefill model) and the multiple flexible alignment that
yields it (wireframe model). The color coding of the
features in the display is by their physico-chemical types
and it is as in the summary part of the page at the top. The
display control panel contains one row for each molecule
in the alignment. Each molecule is depicted in a different
color as it appears in the Jmol display. The pivot is
marked with an asterisk. Two checkboxes are provided for
each molecule in the control panel. The first checkbox
allows the user to show/hide the controlled molecule in the
display and the second checkbox controls the display of
the features of the molecule. In addition, the user can
show/hide the pharmacophore in the display using the
checkbox at the top of the summary part. At the bottom
of the page, there is a link for downloading a Mol2 file
with the candidate pharmacophore and the corresponding
multiple flexible alignment.

SUMMARY

We have presented the first webserver for detecting 3D
pharmacophores shared by known active ligands in the
absence of structural information on the target receptor.
The deterministic and efficient algorithm behind the server
allows a fast and reliable detection of pharmacophores
with explicit consideration of the flexibility of the ligands.
A key characteristic of the server is the ability to detect
outlier molecules as well as to find pharmacophores
common only to subsets of input ligands. The web
interface is simple and easy to use. On the one hand, the
algorithm is fully automated and the user is only required
to upload the input ligands. On the other hand, the server
provides advanced customization options, such as defining
new features or setting the scoring weight of the features.
The pharmacophores found by the server can be further
used for generating new leads or for optimizing existing
ones in a drug design process.
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15. Kurogi,Y. and Güner,O.F. (2001) Pharmacophore modeling and
three-dimensional database searching for drug design using catalyst.
Curr. Med. Chem., 8, 1035–1055.
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